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Abstract

AMD SEV-SNP offers confidential computing in form of confiden-
tial VMs, such that the untrusted hypervisor cannot tamper with its
confidentiality and integrity. SEV-SNP, the latest addition, ensures
integrity via the Reverse Map Table (RMP) that stops the hypervisor
from tampering guest page mappings. AMD uses RMP entries to
protect the rest of the RMP, thus causing a Catch-22 during the
RMP setup phase. To address this, SEV-SNP relies on AMD’s Plat-
form Security Processor (PSP), that resides next to the x86 cores
executing SEV-SNP VMs, to perform the RMP initialization. During
initialization, only PSP should be able to alter the RMP memory.
All other memory accesses must be fenced, especially from the x86
cores. We present RMPOCALYPSE, a novel attack that shows a critical
gap in the security of RMP initialization, wherein the x86 cores ma-
liciously control parts of the initial RMP state. Our analysis shows
that the vulnerability arises due to the complex, but insufficient,
interplay of multiple hardware components and distributed access
controls. To show the impact of our finding, we exploit this gap
to break confidentiality and integrity guarantees of SEV-SNP. We
demonstrate RMPocALYPSE by enabling debug on production-mode
CVMs, faking attestation, VMSA state replay, and code injection.
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1 Introduction

AMD SEV-SNP is deployed in production by major cloud vendors
such as Amazon Web Services (AWS), Microsoft Azure, and Google
Cloud, and has real-world deployments [1, 19, 27, 28]. The main
guarantee that SEV-SNP provides is that the cloud provider who
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can control the privileged software on the cloud servers cannot
abuse that privilege, intentionally or accidentally, to tamper with
the cloud tenant’s computation. In particular, SEV-SNP introduces
the notion of confidential VMs, CVMs for short, that host the tenant
workloads, i.e., code and data. SEV-SNP allows the hypervisor to
perform its resource management tasks (e.g., scheduling, memory
management) while ensuring that the hypervisor cannot leak the
tenant’s data or tamper with its execution.

SEV-SNP encrypts and integrity protects the CVM register state
and memory to stop confidentiality attacks. For integrity, SEV-SNP
introduces the concept of a reverse map table, RMP for short. It
ensures 1:1 mapping between host and guest pages. This way, a hy-
pervisor cannot create malicious page mappings (e.g., assigning the
same physical page to two CVMs or sharing it with the hypervisor).
In particular, SEV-SNP’s RMP addition was motivated by integrity
attacks on its predecessor SEV-ES [37]. Tampering with the RMP
would result in a complete compromise of SEV-SNP. Knowing that
the RMP is the linchpin of SEV-SNP, AMD has several checks and
balances to safeguard the RMP throughout a server’s lifecycle.

When an AMD server initializes SEV-SNP, it implicitly also ini-
tializes the RMP. It goes without saying that a good starting state
of RMP is critical to enforce 1:1 mapping. Once initialized correctly,
the hypervisor can launch CVMs by assigning physical memory
to them. Now, since the RMP keeps track of the page mappings,
any change in the ownership of physical pages must be tracked
in the RMP. This tracking is done on a per-page basis, where each
physical address is represented by a 16-byte RMP entry. Modern
servers have large DRAM capacities with 1-4 TiB being standard
for cloud deployments [17]. This results in a sizeable RMP (16GiB).
Maintaining such a large data structure on-chip is infeasible, so
AMD stores the RMP in the DRAM. This leads to a classic dilemma:
who protects the protector? AMD has an elegant solution: since the
RMP is meant to protect DRAM pages, it can also protect itself.
Given a well-formed RMP state, SEV-SNP can stop the hypervisor
from tampering with the physical page that contains RMP entries—
by simply refusing the hypervisor to map an RMP-owned physical
page to itself. Similarly, any changes to the memory mappings (e.g.,
launching a new CVM) that result in an RMP update can be medi-
ated by a trusted hardware/firmware entity. The only missing piece
of this puzzle is bootstrapping, i.e., how to setup the initial RMP
state when no RMP exists.

AMD SoCs with SEV-SNP support have several x86 cores that per-
form most of the workload computation and a secure co-processor
called the PSP, short for Platform Security Processor. The PSP is not
a general-purpose processor but is strictly for enforcing security
onto the x86 cores and the memory subsystem, as well as tasks
such as preparing attestation reports. AMD uses the PSP to perform
the RMP initialization. Specifically, the hypervisor does several
preparatory steps (e.g., creating a physical region of memory that
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will hold the RMP). The main goal of the PSP is to check the cor-
rectness of the hypervisor-provisioned configuration. Since this is
a critical task, once the hypervisor requests a RMP initialization,
the PSP then accesses diverse platform state registers to perform
its checks (e.g., MSRs configuration). At this point, there is no way
for the hypervisor to write to RMP memory directly, thus allowing
a secure initialization.

We present a novel attack RMPocALYPSE to show that, despite

its best efforts, the RMP initialization has a severe flaw—the PSP
does not properly protect the memory containing RMP during
initialization. Due to the PSP’s incomplete protection, we find that
there is nothing that stops the hypervisor from writing to the RMP
memory. Once we corrupt one RMP entry, we can compromise all
SEV-SNP guarantees. We experimentally confirm RMPocALYPSE on
the Zen 3, Zen 4, and latest Zen 5 processors. We analyze CVM-
specific metadata and use it as corruption targets. Building from
this, we show four distinct ways how RMPOCALYPSE can be used
to fully break SEV-SNP with attestation forgery, enabling debug,
arbitrary code injection, and replay of the CVM register state.
Contribution. RMPocALYPsE is the first attack on AMD SEV-SNP
that demonstrates and exploits a critical gap in RMP initialization
to fully break confidential computing guarantees.
Coordinated Disclosure. We reported the vulnerability to AMD
on the 3rd of February, 2025. AMD acknowledged the vulnerability,
thanked us for the disclosure, and issued CVE-2025-0033. Our code
is public at https://github.com/RMPocalypse.

2 Background

AMD SEV enables CVMs, which are managed by the hypervisor
(e.g., memory management, scheduling). SEV encrypts the guest
memory but does not ensure integrity or confidentiality of the
register state. Encryption works by setting a bit, called the C-bit,
in the physical address. The C-bit propagates to the memory con-
troller and informs it that the memory access should happen in
an encrypted form. SEV is susceptible to attacks (e.g., observing/-
manipulating the unencrypted register state) [20]. Subsequently,
AMD introduced SEV-ES with register state encryption [22]. This
eliminated the attacks that were possible on the previous genera-
tion of SEV CVMs. But crucially, SEV-ES lacked memory integrity
guarantees, rendering the CVMs vulnerable to attacks based on
malicious page mappings [29, 30, 37].

Integrity Attack on SEV-ES. The hypervisor remains responsible
for memory management and programs the second-level address
translation (SLAT) page tables, which map guest physical address
(GPA) to host physical address (HPA). In Figure 1, function auth
located at GPA 0x1000 and function dummy (dummy always returns
0) located at GPA 0x2000 are on 2 different pages. The memory
encryption prevents the hypervisor from writing meaningful data
directly to the pages. The decryption process will result in ran-
dom values. But the hypervisor can program the SLAT tables to
switch the 2 pages, i.e., map the GPA that was pointing to auth to
point to dummy like in Figure 1 (a). Now, when the victim code calls
auth, it will invoke the dummy function, thus always succeeding
in authentication. To fix the flaw, AMD introduced SEV-SNP with
memory integrity protection along with SEV-ES’s register state
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Victim functions
give_access(){ Benign
lf( !auth( )) 0x1000 0x2000
//give access —> | auth() dummy ()
/*ret @ on auth success*/
auth(){ // HPA: ©x8000 (@)
// do authenticate Attack
return result; 0x1000 0x2000
RIP
/*always ret 0*/ —> | dummy () & auth()
dummy(){ // HPA: ©x9000 =1
return 0; (b)
}

Figure 1: (a) Normal execution of CVM (b) Hypervisor swaps
the guest page tables and tricks the VM into executing code
on another page. SEV-ES is susceptible to such attacks.

encryption. To ensure memory integrity, SEV-SNP uses the RMP.
Next, we explain how RMP works and how it is initialized.

2.1 Reverse Map Table (RMP)

RMP is a reverse map table from the HPA to GPA that ties the GPA
and HPA. For Figure 1, this would tie HPA 0x8000 to GPA 0x1000
and HPA 0x9000 to GPA 0x2000. SEV-SNP checks the RMP before
any memory access from the x86 cores. Importantly, unlike the
SLAT tables, the hypervisor cannot arbitrarily change the RMP.
SEV-SNP strictly controls how the RMP is set up and what oper-
ations the hypervisor is allowed to perform on it. With SEV-SNP,
the hypervisor still manages the SLAT tables and can perform the
remapping of the pages like in Figure 1 (b). However, this will not
compromise the CVM. When the CVM invokes the auth function
at GPA 0x1000 that now maps to HPA 0x9000, the RMP will detect
that the translation resulted in a different HPA and will abort the
memory request, stopping the attack. While tying the HPA to the
GPA stops the hypervisor from mounting page-swapping attacks,
it alone cannot prevent the hypervisor from directly writing to the
CVM’s pages. To prevent this, the RMP entries also store informa-
tion about which pages belong to a CVM. The RMP checks stop
any hypervisor writes to CVM pages.

Updating RMP. For security, it is crucial to ensure that the un-
trusted hypervisor cannot change RMP directly. However, the hy-
pervisor needs to update the RMP for certain operations (e.g., CVM
memory management operations). To allow this functionality, AMD
introduced the RMPUPDATE instruction that the hypervisor uses.
RMPUPDATE is subject to strict checks from the SEV-SNP hard-
ware; the hypervisor is only allowed to perform specific actions (e.g.,
creating pending pages a CVM needs to accept). The instruction
blocks all security-undermining actions. If the hypervisor wishes
to perform operations not allowed by the RMPUPDATE instruction
(e.g., create valid CVM pages), it has to invoke AMD’s platform
security processor (PSP) APIs. The PSP is a privileged co-processor
on the AMD chipset and can modify RMP entries. Furthermore,
the PSP can apply additional security checks to the modification
request (e.g., check that the CVM exists by comparing it with the
internal state). Therefore, with SEV-SNP, the RMP can be changed
from the x86 cores (using RMPUPDATE) and from the PSP.
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RMP Initialization: Bootstrapping Security of RMP with RMP.
The RMP contains entries that protect it to prevent the hypervisor
from arbitrarily writing to the RMP directly. However, during RMP
initialization, the RMP is not fully bootstrapped, so it does not
have self-protection. But for self-protection, the RMP must be fully
initialized. This leads to a Catch-22 problem where the RMP relies
on the RMP for protection. The PSP has to ensure that only the PSP
can modify the RMP during initialization, and any writes from x86
cores are blocked.

2.2 Platform Security Processor

The AMD Platform Security Processor (PSP), also known as AMD
Security Processor (ASP) or Security Processor (SP), is an Arm Cor-
tex A5 processor embedded into the x86 platform [9, 16]. The PSP
acts as the root of trust for SEV-SNP and is the most privileged
instance on an AMD chipset. The interacts with the x86 cores and
can write directly to the x86 DRAM. The interface connecting the
platform with the PSP and the exact location of the PSP are not pub-
licly documented. The hypervisor requests PSP services through a
set of MMIO registers at runtime. Should the hypervisor not have
sufficient permissions to change an RMP entry through RMPUP-
DATE, it requests the PSP to execute the transition. Since the PSP
is more privileged and has more capabilities, it can enforce strict
requirements that might be necessary to perform the RMP update
securely. For instance, one of these requirements might be that a
global write-back and invalidation of all caches must be executed
before certain RMP state transitions are allowed. Besides RMP life-
cycle management, the PSP also initializes the RMP. Initialization
is particularly challenging since the RMP uses itself to protect itself
from malicious hypervisor writes to its memory. During initializa-
tion, while the RMP is not yet fully initialized, the PSP relies on
additional platform security controls to block the x86 cores from
writing to the RMP.

2.3 Memory Encryption

AMD SEV encrypts the memory of both the guest and the host.
Encryption takes place at the memory controller [6]. This implies
that all data on the bus between the memory controller and the
caches is unencrypted. Since individual guests use different en-
cryption keys, the CPU core must inform the memory controller
about which key to use. SEV-SNP uses the upper bits of the physical
address to transport the key ID to the memory controller [6]. On
AMD EPYC Gen 4 and 5, this results in an effective reduction of
the physical address space to 46 bits [7]. Memory requests whose
physical address has the so-called C-bit set will be encrypted by
the memory controller. Zen 4 and Zen 5 ensure cache coherency
between memory requests with the C-bit set and those without.
For Zen 3, the cache coherency for the encrypted and unencrypted
domains must be ensured manually by the OS or the PSP [7].

3 AMD SEV-SNP Initialization

We analyze the SEV-SNP initialization flow by sourcing information
from official documentation, source code, and patents. We first
explain our understanding of how the PSP initializes SEV-SNP and
continue with insights about the AMD EPYC platform.
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3.1 PSP Firmware

The SEV firmware runs on the PSP and is responsible for several
lifecycle tasks of SEV-SNP. Most importantly for our analysis, it ini-
tializes SEV-SNP and the RMP in memory. The hypervisor triggers
the initialization routine through an API call, SNP_INIT_EX, to the
PSP.

What does the hypervisor do before SNP initialization? The
hypervisor ensures that the platform is in a pre-defined state for
successful command execution. The PSP does not enable SNP if any
of the prerequisites are not fulfilled [8]. We group the prerequisites
into 3 categories, based on our source code analysis of the PSP
firmware:

(1) MSRs monitoring the current processor state. During SEV-SNP
initialization, all x86 cores are required to execute in normal
execution mode. Specifically, the cores should not execute in
System Management Mode (SMM) or already run a Virtual
Machine. The PSP reads an undocumented MSR to validate
the x86 core execution states [6].

MSRs defining the memory routing. Similar to the checks for
the undocumented MSR above, the PSP checks x86 MSRs
that define how memory accesses are routed. Depending on
those registers, certain memory requests might be routed to
MMIO space rather than DRAM space. The PSP needs these
registers (e.g., TOM, TOM2) to be locked and equal across all
cores. This ensures a uniform memory view and allows the
PSP to exclude MMIO pages from the range of valid guest
pages within the RMP.

MSRs defining system and SEV-SNP features. The PSP checks
SEV-SNP-specific registers for their value and ensures they
are identical across all cores. The BIOS must enable SEV-
SNP through an MSR and set the RMP start and end registers
equally between all cores. Furthermore, the memory con-
troller must have the encryption enable flag set so that it
can receive the encryption keys and perform the encryption.
The PSP continues with preparation for the RMP initializa-
tion, once it confirms that the hypervisor has met all the
prerequisites.

RMP Initialization. The PSP starts the RMP initialization by lock-
ing writes from x86 cores to the RMP memory. The x86 core lock of
RMP memory acts as a first barrier to prevent x86 cores from creat-
ing memory requests targeting the RMP memory region. All x86
cores must acknowledge the setting before the SEV firmware con-
tinues [6]. Subsequently, the PSP creates a second memory barrier
at the memory controller (see TMRs in Section 3.2.2), preventing
x86 cores and devices from writing to RMP in the DRAM. The two
barriers, as depicted in Figure 2 (b), prevent the x86 cores from
overwriting the RMP entry. Ultimately, the PSP writes the initial
RMP configuration to DRAM.

Finalization. Once the PSP finishes writing the RMP, it modifies
the memory controller barriers such that x86 cores are allowed to
write to the RMP again. Note that at this point the RMP checks are
in place. As a last step, the SEV firmware performs another call to
the PSP’s operating system to enforce SEV-SNP semantics globally.
After initialization, x86 cores can manipulate the RMP through
specific RMP instructions, like RMPUPDATE, while microcode or
hardware blocks direct writes to RMP memory.
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Figure 2: (a) SNP is not yet initialized; all RMP memory is
writable. (b) The PSP creates two barriers to prevent x86 cores
and other system entities, such as DMA devices, from writing
to RMP memory. (c) RMP Init is executed successfully, and
all x86 cores now enforce RMP semantics.
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Figure 3: Overview of AMD EPYC Data Fabric interconnect.

3.2 Memory & Interconnect

Figure 3 shows a high-level overview of the components that work
together during the RMP initialization.

3.2.1 Data Fabric. It transports data between x86 cores, memory
controllers, and I/O devices. AMD’s interconnect is called the In-
finity Fabric (IF) and consists of the Data Fabric (DF), and Control
Fabric (CF) [10]. Throughout this paper, we exclusively look at the
Data Fabric.

AMD Zen makes use of a chiplet architecture, meaning Core
Complex (CCX) blocks are individually created and later connected
to the I/O Die. This allows for better yields with increasing core
count, as multiple chiplets combined form a high-core-count proces-
sor. CCX blocks host the main computing resources of the platform,
i.e., the x86 cores. Each CCX block can host between 4 and 8 phys-
ical Zen cores, depending on the architecture [3, 5]. Attached to
each CCX core is an L1 and L2 cache. The L3 cache, although shared
between all cores, is sliced into the different CCX blocks on the
platform. Core Coherent Master (CCM) units connect the CCX to
the Data Fabric and manage memory routing on their behalf.

Next, we have Coherent Slaves (CS) blocks on the Data Fabric. CS
blocks connect to one Unified Memory Controller (UMC) instance.
Most importantly, CS blocks are responsible for ensuring memory
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coherence. If data does not reside within the local cache (L1 /L2
/ L3 slice) of a CCX, a memory request is issued that eventually
lands at the CS. If the CS has already sent the data to another CCX,
the memory request is forwarded to the respective CCX. The Data
Fabric itself caches data while it is in transit through queues.

3.22  Memory Access Checks. SEV-SNP uses two means of memory
barriers to protect its integrity.

1. Trusted Memory Regions (TMRs). They offer complementary
memory access filtering at the memory controller. Each memory
request has an originating Data Fabric component (e.g., CCM).
TMRs filter memory requests based on the source of the request
and may read or write-protect the underlying memory regions. Only
the PSP can install and remove TMRs as they ensure the security of
SEV-SNP and other components (e.g., protect MSR memory). TMRs
do not differentiate between x86 and microcode access [6]. Both
accesses originate from the same CCM and are treated equally by
the TMRs. Thus, if the microcode can write to a memory region,
the hypervisor can potentially also write to the memory region.
During SEV-SNP initialization, TMRs block all writes to the RMP
memory. If a memory request does not pass the TMR checks, it is
silently discarded. After SEV-SNP and RMP initialization, the PSP
removes the TMR that was placed to protect the RMP. As the RMP
is in place to protect the memory, it now allows read and write
access from the CCM units connecting the x86 cores.

2. RMP / x86 Access Checks. Apart from TMR protection, SEV-
SNP uses another protection mechanism to block memory requests.
Instead of enforcing access checks at the UMC boundary, the RMP
access checks are performed at the x86 cores. Each memory write
and certain reads are subject to RMP checks. Microcode or hard-
ware consults the RMP to check whether the x86 memory access is
allowed. In case of a policy violation, the hardware raises a page
fault and stops the memory access before it leaves the core [7]. The
hypervisor cannot change the RMP, as all instructions are subject
to the RMP access checks. Every instruction attempting to access
RMP memory is blocked by the RMP. For functionality, AMD adds
multiple instructions (e.g., RMPUPDATE) that bypass the afore-
mentioned checks. The added instructions offer a highly restricted
API to change the RMP. AMD implements the security checks for
the RMP-modifying instructions in microcode [7]. Furthermore,
AMD employs undocumented protection barriers on so-called MP
elements to safeguard the RMP during initialization [6]. The PSP
activates these barriers using the same semantics to enable SEV-
SNP globally. Section 8 discusses additional details and security
considerations of the RMPUPDATE instruction.

3.2.3  Memory Coherency. Modern systems must ensure memory
coherence between different cores. AMD uses the MOESDIF protocol
for this purpose [7]. x86 cores might opt out of the coherency
on purpose by mapping the same memory region with different
caching attributes. However, this is a direct threat to SEV-SNP
security. The hypervisor might perform split-view attacks on guest
memory, where the guest has dirty data in the caches, but the non-
coherent memory type forces the access to DRAM and does not
access the caches with stale data. AMD defines two non-coherent
memory types capable of bypassing memory coherence. Uncachable
(UC) memory bypasses the caches and directly accesses DRAM
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Table 1: AMD EPYC processors vulnerable to RMPocALYPSE

cex cCX
Core 0 [ Core 1 Core 4 Core 5
T | 2 I | 2 I | 2 T | 2 Generation  Test CPU  Launched SEV Firmware  Microcode
L3 Cache L3 Cache Zen 5/Turin  EPYC 9135 10/10/2024 1.55build 44 0x0b002116
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Zen 4/Genoa EPYC 9124 10/11/2022 1.55build 43 0x0a101154
Core 2 A LCores3 Core 6 A Lcore? Zen3/Milan EPYC 7313 15/03/2021 1.55build 23  0x0a0011d5
ccMm @) ccM o .
the RMP and corrupt its internal state. We confirm the existence of
) Data Fabric @ the vulnerability on the processors in Table 1. Our attack, RMPoca-
[ LYPSE, bypasses all deployed protections to corrupt the initial RMP
cs | | cs | configuration. However, the root cause of the vulnerability is not
T T immediately obvious when studying the PSP source code and the
L L1 documentation, and requires further experiments.
| uwe | | umc |

Figure 4: Coherent memory request flow if cache line resides
in another CCX. (1) The core sends the memory request to
the memory controller. (2) The memory controller sends a
snoop request to the CCX holding the cache line. (3) The CCX
holding the cache line responds with the correct cacheline.

without respecting coherency; and Write-Combining (WC) memory,
where the memory subsystem uses a private write buffer to buffer
memory that is invisible to other cores modifying the same memory.
Apart from two non-coherent memory types, all x86 memory types
are coherent. Hardware transitions the two non-coherent types
into coherent types for SEV-SNP guest access [7]. Thus, coherency
issues from the x86 core pertaining to SEV-SNP guest memory
access should not be possible. AMD also ensures coherence at the
CS blocks. Whenever these blocks receive a memory request, they
either let it pass to DRAM or send a broadcast request to probe the
state of all x86 core caches. Figure 4 depicts a snoop request.

AMD Zen 3 EPYC CPUs do not offer automatic coherency be-
tween the encrypted and unencrypted domains (C-bit set and not
set). The CPU can have the plaintext and the ciphertext versions
dirty in its caches with different values. An overwrite of the plain-
text or ciphertext data does not cause the eviction or update of the
other version. For instance, if the PSP writes to the RMP memory
and at the same time the CPU has dirty cachelines of RMP memory
but in the ciphertext domain, the accesses do not snoop the caches
and the dirty cachelines remain in the cache. This behavior is only
present on Zen 3, as Zen 4 and 5 automatically ensure coherence
even between encryption domains. These details become important
when we discuss the countermeasures for the RMPocALYPSE attack
and what care must be taken.

4 RMPocaLypse Attack

Analyzing the security of the RMP is not straightforward, as many
details on how the internal protection mechanisms work are pro-
prietary and not publicly available. To this end, our goal is to study
how SEV-SNP protects the RMP, specifically during initialization.
In combination with the PSP source code, we analyze what occurs
at AMD SEV-SNP initialization and hypothesize about the lack of
implemented protection mechanisms. Our experiments testing the
security of SEV-SNP initialization flow show that we can overwrite

Thread Model. We operate in the default confidential computing
threat model. The hardware, especially the CPU and all compo-
nents provided by the CPU manufacturer, and the firmware are
trusted. The hypervisor is untrusted and can operate maliciously.
Furthermore, we assume the hypervisor can create and run CVMs.

4.1 Experiments

Since the exact initialization steps are not publicly documented,
we start with the initial goal of reverse engineering the protection
checks. To test this, we perform the following experiment on a Zen
5 machine: we create a kernel thread running on the x86 host that
repeatedly writes to RMP memory as the PSP activates the barriers
asynchronously (see Section 3.2.2). Thus, the kernel thread writes
continuously to RMP memory in a while loop and stops once SNP
initialization is done or it encounters an exception. We isolate the
kernel thread by pinning it to a CPU core. We further synchronize
the SNP activation call with the kernel thread. The step is neces-
sary to ensure that our thread is running during SNP initialization.
Without it, the thread races with the SNP initialization, and we en-
countered cases where SNP activation has already finished before
the thread reached the while loop. We modify the Linux exception
handler to jump to the exit_jump label on Line 5 in Listing 1 if it
encounters an exception in our code. Listing 1 shows our code.

L]
» atomic_set(overwriting_thread_initialized,b1);
3 local_irq_save(flags);
+ while (!kthread_should_stop()){
5 WRITE_ONCE (rmptable[0],0x4);
6}
exit_jump:
s local_irq_restore(flags);

Listing 1: RMPocaLypsE Exploit code.

When we run the code in Listing 1, we change the value in rmpt-
able[0] from 0x0 to @x4. This shows that we can corrupt the initial
RMP configuration and write arbitrary values to RMP memory. Note
that, no matter what the root cause might be, we can use the above
primitive to perform the attack described in Section 6 to undermine
AMD SEV-SNP security guarantees.

Initial Assumption. According to the source code and comments
in the documentation, we could only explain the behavior by assum-
ing a memory coherency issue: the PSP writes in a non-coherent
manner to the x86 DRAM; dirty x86 cachelines pointing to the RMP
are untouched during init and overwrite the RMP once the PSP
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lifts the TMR barriers. As described in Section 3.2.2, it seems two
barriers protect the RMP during init, and the only way to write to
the RMP is before the PSP installs those two barriers. The SEV-SNP
ABI specification [8] states: “Before invoking SNP_INIT_EX with
INIT_RMP set to 1, software must ensure that no CPUs contain dirty
cache lines for the memory containing the RMP”. Combined with
comments in the PSP source code for Zen 4 that discuss the missing
coherency of PSP writes [6], we have a strong reason to assume
that the PSP and x86 cores probably do not enforce coherency.

4.2 Root Cause Analysis

Based on the RMP initialization lifecycle summarized in Section 3,
we perform a sequence of experiments based on reverse engineering
and hypotheses to identify the root cause of our observation.
Hypothesis 1: Lack of Coherency. We start with the assumption
that the PSP is non-coherent and that the hypervisor can evict dirty
cachelines in the x86 caches after RMP initialization completes.
To test our hypothesis, we need a CPU that indeed has missing
cache coherency, to rule out other factors that might influence our
experiments (e.g., timer-based cache flushes [4]). Recall that Zen 3
does not enforce coherence between the encrypted and unencrypted
domains.

local_irq_save(flags);
WRITE_ONCE(rmptable_nocbit[0],0x4);
wbinvd () ;

4+ ncbit = READ_ONCE (rmptable_nocbhit[0]);

5 cbit = READ_ONCE(rmptable_cbhit[0]);

6 while (!kthread_should_stop()){

7 tmpNC = READ_ONCE (rmptable_nocbit[0]);

8 tmpC = READ_ONCE (rmptable_cbit[0]);

9 if (tmpNC != ncbit){

10 if(tmpC == cbhit){

11 pr_info("PSP most likely coherent\n");
12 }

13 }

14 }

15 exit_jump:
16 local_irq_restore(flags);

Listing 2: Code to Validate the Cache Coherency Hypothesis.

Listing 2 shows a slightly modified version of our initial Listing 1
exploit, which we run on our Zen 3 system. Specifically, we access
the encrypted and unencrypted pages in the same pattern to make
sure they are most likely subject to the same eviction policy in
the caches. If PSP writes are memory coherent, we will only see
an update in the unencrypted domain, as the PSP writes memory
requests to the RMP without the C-bit set/ If PSP writes are non-
coherent, we will either see no change in both values, or changes in
both (encrypted and unencrypted), as the fabric has automatically
flushed the caches [4]. In our experiments, we repeatedly see the
print statement on line 11. From this, we deduce that the PSP is
more likely to be memory coherent and that coherency is probably
not the underlying issue.

Hypothesis 2: Missing Barrier. Next, we hypothesize that a bar-
rier, which should be present according to the PSP source code [6],
might be missing. As the PSP performs the RMP initialization asyn-
chronously with respect to the x86 cores, we cannot precisely time
the writes. We wait until the PSP writes a certain RMP entry, and
when we observe a change in the entry, we simply overwrite it
again, as shown on Line 7 in Listing 3.
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1 local_irq_save(flags);
WRITE_ONCE(rmptable[0],0x4);

o

5 wbinvd () ;
4+ while (!kthread_should_stop()){
5 tmp = READ_ONCE(rmptable[0]);

if (tmp != 0x4)
WRITE_ONCE(rmptable[0],0x4);

1 o

8 3
9 exit_jump:
10 local_irqg_restore(flags);

Listing 3: Code to Validate the Missing Barrier Hypothesis.

If our write goes through, we know that one or both barriers
must be missing. When executing the code, the final RMP entry
is 0x4, showing our hypothesis is true. Next, we need to narrow
down which of the barriers are missing. Note that the code without
the RMP overwrite in the while loop does not change the RMP after
initialization.

Possibility 1: Missing TMR Barrier. To check the existence of
the TMR barrier, we repeat the experiment from Listing 3, but map
the page as uncachable on the x86 host. This will ensure that our
writes directly hit the memory controller and are not cached in
the L1, L2, or L3 cache. If the TMR barrier is present, we will not
see the value 0x4 as a final RMP entry. The experiment shows 0x0
as the final value, which proves that Line 7 in Listing 3 does not
overwrite the RMP memory. From this, we deduce that the TMR
barrier must be present and it protects the memory range from
overwrites. The experiment also shows that the x86 core barrier is
either non-existent or inactive.

Possibility 2: Inactive x86 Barrier. According to the source code,
the PSP activates the barrier in the same way it activates the RMP
checks [6]. SEV firmware performs a syscall to its PSP operating
systems (no source code available), but with different flags. Since
x86 cores cache RMP access permissions in the TLB, we suspect the
barrier mentioned in the PSP source code might be TLB-based. If
so, a flush after activating the barrier would be necessary by the
PSP, which currently does not happen, according to the publicly
available source code. To confirm if AMD simply forgot a global
TLB flush initiated from the PSP, we added the TLB invalidation
manually to the x86 core.

1 local_irq_save(flags);

2 WRITE_ONCE (rmptable[Q],0x4);

3 wbinvd () ;

4+ while (!kthread_should_stop()){

5 tmp = READ_ONCE (rmptable[0](;

6 if (tmp !'= 0x4){

7 asm ("invlpg(%0)" ::"r"(rmptable)
WRITE_ONCE(rmptable[0],0x4);

"memory");

9 }
0 }

11 exit_jump:

12 local_irq_restore(flags);

Listing 4: Code to Validate the Missing TLB Flush Hypothesis.

We add the TLB flush just before the second overwrite on Line 8 in
Listing 4. The final RMP entry is still @x4 after executing the code
in Listing 4. We conclude that the issue is not a missing TLB flush.
Possibility 3: Non-Existent x86 Barrier. By elimination, we con-
clude that no x86 core barrier is active. This is why the x86 cores
can create arbitrary cache entries pointing to RMP memory during
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Figure 5: (a) No RMP protection exists prior to initialization.
(b) The attacker calls SNP_INIT_EX to initialize SEV-SNP. Dur-
ing initialization, only a TMR barrier exists, allowing the
attacker to create dirty cachelines pointing to RMP memory.
(c) Once the PSP finishes SEV-SNP initialization, it destroys
the TMR region. Furthermore, x86 cores now perform RMP
checks on all memory accesses. However, the dirty cache-
line pointing to the RMP still exists. The attacker flushes
the cacheline and successfully overwrites the initial RMP
configuration in DRAM.

initialization. Although the TMR prevents flushing these entries
during initialization, after the initialization finishes, the cache en-
tries overwrite the RMP and corrupt the initial RMP configuration.
Figure 5 illustrates an overview of the attack and what happens on
a macroarchitectural level.

5 RMP and States

RMPocALYPSE enables us to overwrite RMP entries on initialization.
Next, we leverage RMPOCALYPSE capabilities to break the security
of SEV-SNP. We discuss all RMP entries in the system and the logic
state they belong to. Then we discuss the impact of corrupting them
with RMPOCALYPSE.

5.1 RMP States

AMD defines ten page states in SEV-SNP. Each state defines specific
access attributes. Microcode uses the state to allow or deny memory
requests. Table 2 maps all publicly documented page states for
SEV-SNP to the RMP entry bits defining their state. RMPOCALYPSE
allows an attacker to write arbitrary data to the RMP, effectively
introducing new transitions between the states [8]. Furthermore,
with RMPocALYPSE, the hypervisor can execute state transitions
that are strictly reserved for the PSP. To understand the capabilities
of our attack, we must introduce the implications of different page
states. We denote the name of the state in italics font, since some
page state names are overloaded.

Hypervisor. Hypervisor pages have no RMP restrictions. The hy-
pervisor may use them for regular operation (e.g., as data memory)
or promote them to other pages through RMPUPDATE. Hypervisor
pages are readable and writable, and may be encrypted in DRAM
depending on the system setting.
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Table 2: Documented SEV-SNP RMP page states.

State Assigned  Validated ~ ASID  Immutable = GPA  VMSA
Hypervisor 0 0 0 0 0 0
HV-Fixed 0 0 0 1 0 0
Reclaim 1 0 0 0 0 0
Firmware 1 0 0 1 0 0
Context 1 0 0 1 0 1
Metadata 1 0 0 1 0 0
Pre-Guest 1 0 guest 1 GPA 0
Guest-Invalid 1 0 guest 0 - 0
Pre-Swap 1 1 guest 1 GPA 0
Guest-Valid 1 1 guest 0 GPA 0

HV-Fixed. HV-Fixed pages have no RMP restrictions, and the
hypervisor can read and write to them. However, as the name
suggests, they cannot be promoted into any state other than HV-
Fixed. The SEV firmware marks security-critical pages as HV-Fixed
(e.g., MMIO memory). The hypervisor may additionally supply a
list of pages it wants to mark as HV-Fixed to the SEV-SNP firmware
initialization call.

Reclaim. Reclaim pages serve no active purpose and are the result-
ing page state of pages that the SEV firmware no longer needs. Once
a page is in the Reclaim state, it can be reclaimed by the hypervisor
through RMPUPDATE. The hypervisor may ask the firmware to
transform Firmware pages into the Reclaim state by using the SEV
API SNP_PAGE_RECLAIM.

Firmware. Firmware pages are reserved for SEV firmware use. The
hypervisor cannot write to, nor can it directly change, the RMP en-
try of Firmware pages. The SEV firmware may use Firmware pages
freely for its operation or transition them to Context or Metadata
pages. The hypervisor can create Firmware pages using RMPUP-
DATE on a Hypervisor page. Most notably, the memory backing
the RMP is also in the Firmware state, meaning the RMP uses itself
for protection.

Context. Context pages hold the internal guest context used by
the PSP for managing the CVM. Context pages contain the most
sensitive information (i.e., the attestation value and SEV-SNP op-
tional security features). The PSP encrypts the Context page inline
and does not rely on the memory controller to perform the encryp-
tion. Performing inline encryption ensures the context information
remains encrypted even while passing through the Data Fabric.
Only the PSP can decrypt the memory in a Context page. The RMP
protects Context pages from hypervisor writes.

Metadata. Metadata pages hold security-relevant information, such
as the hash of swapped-out pages in the system. The hypervisor
may swap active guest pages out of DRAM to disk. Metadata pages
ensure the integrity of the swapped-out pages by storing the hash
and other state information about the pages. The RMP protects
Metadata pages from hypervisor writes.

Pre-Guest. Pre-Guest pages are non-active pages and ensure one
invariant: neither the guest nor the hypervisor can write to the
page. The PSP can securely operate on Pre-Guest pages as no x86
entity can change the page content. The hypervisor creates Pre-
Guest pages using the RMPUPDATE instruction. Operations such
as SNP_MOVE_PAGE require both the destination and the source page
to be in the Pre-Guest State. Without the invariant, the PSP might
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move the page, and the guest is still writing to it. Pre-Guest pages
prevent race conditions between the PSP and x86 cores.
Guest-Invalid. Guest-Invalid pages are the ones that are about to
be handed over to a guest. The hypervisor creates Guest-Invalid
pages by using RMPUPDATE. Subsequently, a guest may use the
PVALIDATE instruction to accept the page from the hypervisor. Ac-
cepting the page results in the Guest-Invalid page being transitioned
into a Guest-Valid page. However, the content is not re-encrypted
with a key. Guest-Invalid pages may only be used to supply the
guest with more memory, but not to supply the guest with the
initial state memory. The PSP supplies the initial memory to the
guest using a special SEV firmware command, SNP_LAUNCH_UPDATE.
Guest-Invalid pages are non-active pages.

Pre-Swap. Pre-Swap pages serve a similar purpose to Pre-Guest
pages. Before swapping a guest page to disk, the hypervisor uses
RMPUPDATE to transition a Guest-Valid page to Pre-Swap. Pre-
Swap pages can only be modified by SEV firmware as they have the
validated and immutable bit set. Furthermore, Pre-Swap pages also
serve as a temporary page state for other SEV firmware commands
(e.g., SNP_PAGE_MOVE).

Guest-Valid. Guest-Valid pages represent SEV-SNP guest memory.
Guest-Valid pages store guest data and are encrypted in DRAM.
The hypervisor can read encrypted Guest-Valid pages but cannot
write to them.

Undocumented Page States. Apart from the publicly documented
RMP states, we observe at least two undocumented states. Pages
holding the VMSA register state of a CVM vCPU have two different
unique RMP entries depending on if the VMSA is in use or not.

o Idle VMSA RMP entry 0x6010fffffffffoo1
o In-Use VMSA RMP entry oxfffofffffffffool

The official SEV-SNP ABI documentation does not include any
information regarding the states [8]. Most likely, AMD uses these
RMP entries to mark a VMSA in use such that the same register
state cannot be reentered twice. Further, the PSP sets the ASID of a
page state temporarily to @x3FF, an unused ASID, to lock a 2MiB
sub-region from updates [6]. AMD may define other undisclosed
states with internal meaning in the RMP.

5.2 RMP Structure in Memory

Two Model Specific Registers (MSRs) define the RMP in memory.
MSR 0xC0010132 marks the beginning and MSR 0xC0010133 the
limit of the RMP. According to public documentation, the first 16KiB
of the RMP are used for bookkeeping without specifying it further.
We suspect it might be used for synchronizing RMP updates. The
remaining memory in the RMP is used to hold RMP page state
information for all memory (optionally a subset of the available
memory). Memory includes DRAM but also MMIO, such as PCle
device BAR regions and the PCle configuration space. Each RMP
entry is 16-byte in size for a 4KiB page. Thus, the RMP incurs a
0.4% memory footprint.

Single Point of Failure. Depending on the alignment, there is
one or two RMP entries where the RMP entry points to the page
it resides on (e.g., the red entry in Figure 6). To find the RMP page
protecting itself, we need to solve Equation 1 for x.

RMP_START + 0x4000 + (x >> 8) = x (1)
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Table 3: Target RMP Pages of Impact for SEV-SNP. Attacks
show what RMPocALYPSE can do by transitioning the pages
into a writable state.

State Usage Attacks
Firmware protects Firmware pages (e.g, make RMP writable & exploit pos-
RMP) sible race conditions between PSP
and hypervisor
Context protects CVM management data forge attestation report & Forge
ASID & enable debug of a produc-
tion ready CVM
Guest-Valid protect common CVM memory  rollback page & overwrite with ran-
from hypervisor dom data & inject arbitrary data
Guest VMSA protect the register state of a CVM  rollback attack
HV-Fixed protects MMIO & other special

memory from being used for any
SEV-SNP operations

The first four pages of the RMP are used for bookkeeping. We add
0x4000 to account for the offset. Since each RMP entry is exactly 16
bytes, we need to shift the address by 8. Pages are 0x1000 bytes in
size, which equals 1 << 12 bytes. 16 bytes equal 1 << 4 bytes. To get
the RMP index of an arbitrary page, we need to shift it by 12—-4 = 8.
For example page 0x0000 has index RMP_START + 0x4000, page
0x1000 index RMP_START+0x4000+(0x1000 >> 8) = RMP_START+
0x4010 and so on.

We visualize the RMP entry protecting itself in red in Figure 6.
After solving for x and making the entry hypervisor-owned, we
can overwrite all RMP entries on the page protected by the RMP
entry. Subsequently, we transition all adjacent pages around x into
hypervisor writable pages. All adjacent pages are now writable. We
overwrite all RMP entries on their pages and transition them from
Firmware to Hypervisor. We continue inductively until the entire
RMP is marked as hypervisor writable memory. For the case that
x is the first or last RMP entry, we need to additionally overwrite
an entry on the page before or after. In summary, by having the
capability of overwriting one RMP entry, we gain the privilege of
overwriting the entire RMP.

6 Using RMPOCALYPSE

We discuss the page states of interest to RMPocALYPSE and intro-
duce primitives to compromise CVMs on SEV-SNP.

6.1 Target States of Impact

After initialization, the RMP contains only 3 different states, HV-
Fixed, Hypervisor, and Firmware. The PSP marks all RMP entries
pointing to RMP memory as Firmware such that the hypervisor
cannot write to the RMP. Further, it marks potentially dangerous
memory regions, such as System Management Mode memory and
all types of MMIO memory, as HV-Fixed. HV-Fixed pages may be
freely written to by the hypervisor, but their RMP state cannot
be altered. Lastly, Hypervisor pages can be promoted to SEV-SNP-
related pages through RMPUPDATE and the PSP APL

As Section 5.2 discusses, we can overwrite one Firmware RMP
entry to make the entire RMP writable. By using this primitive, we
can not only overwrite the 3 pages on init, but all possible states
during the RMP lifecycle. For scope, we exclude all non-active page
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Figure 6: Memory structure of the RMP. The arrows show the page that an entry in the RMP protects. The entry marked in red
protects the page it resides on. The red entry is the single point of failure of the RMP; if an attacker can overwrite the red entry,

the RMP protection can be disabled.

states (e.g., Pre-Swap, Pre-Guest, Metadata). Table 3 summarizes the
possible attacks. We discuss the most promising targets.

Overwriting Hypervisor Pages. We can transform Hypervisor
pages into any other state. For instance, we could overwrite the
Hypervisor page such that it becomes a Guest-Valid page with a
specified GPA. However, the exploitation of this primitive is chal-
lenging. The main problem is that the content of the page will
be read decrypted by the CVM. Thus, no matter which value the
attacker has put into the Hypervisor page before transitioning it
into a Guest-Valid page, the guest will read pseudo-random text.
The same applies if we were to transition a Hypervisor page into
any other encrypted page state. However, transitioning other page
states into the Hypervisor state is particularly interesting since it
allows the attacker to write to previously write-protected pages.

Overwriting HV-Fixed Pages. We may submit pages we want to
mark as HV-Fixed to SNP_INIT_EX. Additionally, the SEV firmware
obtains a memory map of the platform and marks security-critical
pages as HV-Fixed. Security-critical pages include, for instance, the
System Management Mode (SMM) memory region and all MMIO
pages. Setting MMIO pages to HV-Fixed is vital for SEV-SNP se-
curity. The UMC blocks perform the encryption of the memory
content. If the memory targets MMIO regions, no encryption hap-
pens. Furthermore, MMIO regions are otherwise accessible to the
untrusted hypervisor (i.e., PCle config space, PCle device BAR re-
gion). It would trivially allow us to read and write arbitrary CVM
data. Consequently, marking HV-Fixed pages as Guest-Valid pages
seems to be a promising target. However, our experiments show
MMIO pages marked as guest memory result in hardware-generated
#VC exceptions on access. We conclude HV-Fixed pages are not an
interesting target for RMPOCALYPSE.

Overwriting Firmware Pages. The PSP marks the RMP mem-
ory as Firmware pages during SEV-SNP initialization. By chang-
ing the Firmware state to Hypervisor state, we make the pages
writable. Transitioning all Firmware pages that protect the RMP to
Hypervisor pages is the first step of RMPocarLypsE. Furthermore,
pages that might be promoted to other states by the PSP are tem-
porarily in the Firmware state, such that x86 cores cannot write to
them anymore. Overwriting the page state while the PSP uses the
pages may lead to race conditions. We do not explore the attack
possibility further.

Overwriting Context Pages. Context pages hold all management
data related to an SEV-SNP CVM. Each CVM gets its unique Context
page. The SEV-SNP debug enable bit is part of the Context page
(Section 7). Overwriting the bit transitions the CVM into debug
mode and allows an attacker to trivially read and write CVM mem-
ory. An attacker may use RMPoCALYPSE to make the Context page
writable by transitioning its RMP entry into Hypervisor state. Fur-
thermore, the Context page contains the attestation hash and the
ASID (unique identifier of a CVM). We can forge the attestation
report and impersonate another CVM’s ASID by replaying the
Context page. All the attacks are possible because Context pages
are inline encrypted by the PSP AES engine, but without integrity
protection (see Section 2.3).

Overwriting VMSA Pages. AMD documents do not publicly de-
fine the RMP state of VMSA pages. However, we observe their
layout by profiling the VMSA page in a CVM (see Section 5.1).
VMSA pages are only writable by microcode and the guest. How-
ever, the hypervisor can read and snapshot its encrypted content.
RMPocALYPSE enables us to overwrite the VMSA pages at any point
in time with arbitrary data. Writing saved VMSA page content to
the actual VMSA page allows us to enter a CVM with an old register
state we previously saved, effectively breaking the integrity.

Overwriting Guest-Valid Pages. Guest-Valid pages host code
and data used by CVMs. We can read the encrypted content of
Guest-Valid pages, but cannot overwrite them. By changing the
RMP entry from Guest-Valid to Hypervisor, we get the capability of
writing arbitrary data to the pages. We gain arbitrary code injection
by combining the primitive to replay the data with the SEV-SNP
ABI SNP_PAGE_MOVE and an I/O interface of the CVM. We discuss
this attack vector in detail in Section 6.2.

Remaining Page States. The remaining page states may be used
to compromise SEV-SNP security. However, they are not active
pages (i.e., not actively used by the PSP hypervisor or the Guest)
and are thus used to temporarily ensure some invariants (i.e., block
x86 core access such that the SEV firmware can securely operate
on a page). Most attacks unique to non-active page states include
split-view attacks where the PSP thinks it has exclusive access, but
the hypervisor/guest can also write to it. Race conditions induced
by split view attacks are challenging to exploit, and finding suitable
cases requires a detailed analysis.
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6.2 Primitives

RMPocALYPSE can be used to corrupt many targets. We pick the
following four to show the richness of our attack.

Enabling Debug Mode. SEV-SNP allows debugging of CVMs. The
hypervisor may enable debug mode by setting a bit during guest
creation. Since it is part of attestation, an attacker cannot create
debug-enabled CVMs and trick the victim into believing it is a
secure CVM. The PSP stores the debug-enable bit in the Context
page belonging to the guest. Production CVMs do not have the
debug-enable bit set. Our goal is to toggle the bit and enable debug
mode. The PSP inline encrypts the Context page with its private
key. The RMP protects the Context page from malicious overwrites
from the x86 cores. RMPocALYPSE allows us to remove the write
protection of Context pages by transitioning them to Hypervisor
pages. We use this primitive to overwrite the ciphertext of the
Context page at the 16-byte block hosting the debug-enable bit.
Since we have no control over the plaintext when the PSP decrypts
the Context page, we need to get lucky to cause the bitflip. AES
decryption of a random ciphertext behaves like a pseudo-random
function. Subsequently, by changing the ciphertext, we have a 50%
chance of flipping the debug-enable bit. By repeating the process,
we achieve a 100% success rate. Once we flip the debug-enable
bit, we use the SEV-API functions SNP_DEBUG_DECRYPT to leak the
entire guest memory and SNP_DEBUG_ENCRYPT to write arbitrary
data into guest memory. The victim has no possibility of detecting
the attack since the attestation report states that the debug-enable
bit is not set. Further, we can always reset the Guest Context page
to its original value after executing our attack.

Attestation Forgery. Breaking the attestation mechanism renders
confidential computing useless. We use RMPOCALYPSE to forge an
attestation report and corrupt the initial CVM state. The PSP stores
the attestation report encrypted in a Context page belonging to the
CVM. The PSP decrypts the Context page but does not check its
integrity. The lack of integrity enables us to perform a ciphertext
rollback attack at block granularity. Fortunately, the PSP freshly
generates the Context page encryption key once during every plat-
form boot. The static key allows us to perform a replay attack
between two Context pages. We create a benign CVM and snapshot
its ciphertext attestation value in the Context page. Subsequently,
we create a malicious CVM and replay the ciphertext attestation
value we previously obtained. If the victim connects to the newly
created malicious CVM and queries the attestation value from the
PSP, it gets the benign attestation report, despite the loaded image
being malicious.

VMSA State Rollback. The state loaded into CPU registers on
VMRUN is stored in the VMSA. By saving the VMSA and rewriting
it to the VMSA page at a later time, we reenter the CVM with the
saved register state. We can stop the CVM precisely by using page-
fault in combination with SEV-Step [38]. After we interrupt the
CVM, we save its VMSA page. While the CVM is not running, we
can transition the VMSA page to Hypervisor and write the saved
VMSA to the VMSA page. The next VMRUN instruction using the
VMSA page will enter the CVM, but at the old saved state.
Arbitrary Code Injection. We inject arbitrary code into the victim
CVM by only manipulating Guest-Valid pages. Every CVM needs
an interface to communicate with the outside world. We use this
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I/O interface to inject arbitrary attacker controlled data into the
CVM [30]. On SEV-SNP, we cannot replay ciphertext from physi-
cal page A to page B because different pages are encrypted with
different tweak values. This ensures that even if page A and page B
have the same plaintext, they encrypt to different ciphertexts. Un-
fortunately, if we try to use RMPOCALYPSE to replay the ciphertext
from page A to page B, this will lead to pseudo-random data. For
successfully overwriting page B with page A’s plaintext, we must
first ensure the content of page A is encrypted with the tweak value
of page B. The SEV-SNP API SNP_MOVE_PAGE gives us this primi-
tive. We move the content of page B to a temporary page, move
the content of page A to page B and back, and lastly, restore the
original content of page B from the temporary page. Furthermore,
we snapshot the ciphertext of page A’s content on page B. The ci-
phertext corresponds to page A’s content encrypted with the tweak
value of page B. Until this point, we did not use any RMPOCALYPSE
primitive. The actual attack is to use RMPOCALYPSE to remove the
write protection of page B and effectively replay page A’s ciphertext
we just snapshotted. Since page A contains attacker-controlled data,
we effectively overwrite page B with arbitrary data. In our attack,
page B contains kernel code, and we use the I/O channel to inject
arbitrary code. Alternatively, we can execute the same attack using
PSP APIs exposed in debug mode.

7 Implementation & Evaluation

We perform our experiments on an AMD EPYC 9135 16-core proces-
sor with 32 GiB RAM. The Zen 5 processor runs the latest microcode
0xb002116 and PSP firmware version 1.55 build 44 as of 3rd Feb-
ruary 2025. We use Linux 6.12 as a hypervisor and guest kernel
for our exploits. For SEV-SNP initialization, we use the SNP ABI
command SNP_INIT_EX. We set the additional flags INIT_RMP and
LIST_PADDR_EN as additional arguments for SNP_INIT_EX.

RMP Overwrite. We change the Linux function __sev_snp_-
init_locked to omit the first wbinvd call on all CPUs. Furthermore,
we add our page table mapping code and create a kernel thread,
execute_attack, to overwrite the RMP. These changes account
for 180 LoC changes. SNP_INIT_EX takes 234 ms to execute. Linux
is occasionally unable to recover from the RMP page fault dur-
ing initialization. The RMP page faults happen because our kernel
thread constantly writes to RMP memory, which will eventually
become read-only, causing the fault. We add recovery logic within
the page fault handler to mitigate the RMP-induced crashes. We
change the RIP to point to the label exit_jump within the Listings
in Section 4.1. This ensures the stack frame is properly recovered
upon exit, and we are not crashing the kernel.

7.1 Enabling Debug

We enable debug mode on fully attested production CVMs. The
debug mode allows us to stealthily exfiltrate and inject arbitrary
data. The hypervisor may enable the debug mode of a CVM by
setting a bit during creation (or disable debug by omitting to set it).
Eventually, the PSP writes the debug-enable bit into the Context
page as part of the snp_policy field. The snp_policy is part of
the attestation report. The guest checks the attestation report after
the CVM has been initialized. However, RMPocALYPSE changes the
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snp_policy after the guest attests the CVM, and thus, the change
remains undetected by the guest.

Finding the Offset. The exact offset of the debug-enable bit within
the management structure in the PSP is undocumented. The Context
page offsets in the SEV-SNP specification are outdated [2]. Extract-
ing the location by replicating the struct guest_context_page
does not work reliably since not all struct fields are properly de-
fined (i.e., some fields are missing a size, and we do not know which
compiler flags have been used to compile the SEV firmware code).
Furthermore, the open-source SEV firmware code is for Zen 4 and
is almost 2 years old. In the meantime, the code has been updated
19 times (FW version 1.55.25 vs. 1.55.44). We extract the offset of the
snp_policy field dynamically. To find the location, we snapshot
the Context page of a guest under our control at time t. Subse-
quently, we send a guest message to the PSP. The PSP increments
the msg_count® that directly follows the snp_policy. We dump
the guest context page again and compare it to the one at times-
tamp t. We observe a change in the encrypted AES block starting
at offset 9x200. Since msg_count® is naturally aligned, we assume
snp_policy is either in the same 16-byte block or in the previous
one.

Experiments. To test our hypothesis, we use our RMP overwrite
primitive to make the Context page writable and increment the
ciphertext at offset @x200 / 0x19F by 1. Incrementing offset 0x200
does not affect the debug state. However, after incrementing offset
0x19F, we observe a debug-enable bit flip. We monitor the flip by
executing SNP_DBG_DECRYPT and observing the error code. Error
code 0x7 indicates a policy violation (disabled debug mode), and
code @x@ shows success. The PSP inline decryption of the modified
Context page ciphertext results in a pseudo-random number. A sin-
gle overwrite has a 50% probability of flipping the debug-enable bit
in snp_policy. After 10 tries, we have an average success proba-
bility of 1 — 2% = 99.9%. Changing the ciphertext and validating if
the bit has flipped costs between 699us to 905us. The lower end is
if the PSP does not perform the actual decryption and aborts due
to a policy violation, and the upper end is if the PSP decrypts the
page and our attack succeeds.

while(fail){
tmp_value = __rmptable[gctx_paddr >> 12].10;
3 __rmptable[gctx_paddr >> 12].1lo = 0x4;
4 gctx_virt[Ox1FF1++;
5 __rmptable[gctx_paddr >> 12].1lo = tmp_value;
fail = do_debug_decrypt(gctx_paddr,hpa_p1,0x1000);

7}

Listing 5: Flipping the debug-enable bit in the Context page.

Listing 5 shows our kernel module code to flip the bit. We change
the RMP entry of the Context page twice. First, to make the Context
page writable by the hypervisor and second, to pass the correct
page state to SNP_DBG_DECRYPT. The end-to-end attack with a 99.9%
success probability takes at most 7.2 ms. For a 99.9999% success
probability, the attack needs at most 14.2 ms. We implement our
attack in a Linux kernel module in 496 LoC.

7.2 Attestation Forgery

The guest measurement hash is 48 bytes long and stored in the
Context page. The PSP calculates the hash over the initial state of a
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CVM. We obtain the necessary Context page offset of measurement
from prior work [12]. We snapshot a 64-byte block starting from
offset @x460. Due to the non-16-byte alignment, the snapshot in-
cludes a larger ©x40 byte memory area. In the offline phase, we boot
the benign image using the correct configuration parameters. We
capture the encrypted measurement from the Context page once
the PSP finishes CVM initialization. In the online phase, we boot a
malicious image (e.g., a slightly modified image with a backdoor).
The PSP calculates the measurement hash over the malicious image.
When the guest requests an attestation report, we overwrite new
Context pages measurement with the hash of the benign image. The
guest requesting an attestation report requires it to forward the
request through the hypervisor. Thus, the hypervisor can change
the measurement value before making the call to the PSP to request
the attestation value. To ensure the attack works, we modify the
Linux kernel to use the same physical address of the Context page
for both boots. The guest in the malicious image receives the attes-
tation report for the benign image and assumes the environment
is set up correctly. Appendix A provides a detailed explanation of
AMD SEV-SNP attestation procedure.

7.3 VMSA State Rollback

We snapshot the vCPU’s VMSA in the svm_vcpu_run function. Af-
ter a few seconds, we intercept the CVM execution in the same
function and replay the saved VMSA. We replay the saved VMSA
page by transitioning the active VMSA page to Hypervisor, writ-
ing the saved VMSA to the active page, and transitioning it back
into VMSA page state. The register state of the CVM has been suc-
cessfully reset. We experiment with a monotonously incrementing
counter and observe a counter rollback if we overwrite the register
state. An attacker may use the privilege to snapshot arbitrary states
and reenter the CVM with a chosen snapshot.

7.4 Arbitrary Code Injection

We perform arbitrary code injection in three steps:

1. Breaking Physical KASLR. We use techniques from previous
works to break physical KASLR [30, 34, 37]. The last address of de-
terministic execution is page 0x4fb600@. The page fault following
that page is the startup_64 function and marks the beginning of
the vmlinux image.

2. Getting Malicious Data Into the Kernel. We use a Python
script to craft a network packet with a data payload. We observe
Linux copying the packet into CVM memory using virtio queues.
Eventually, Linux converts the packet into an skb struct in the Linux
kernel, and our payload resides on a 4KiB page.

3. Swapping Pages. We implement the SNP_PAGE_MOVE API call
since Linux does not have a wrapper at the time of writing. Our
implementation consists of 637 LoC. Swapping one page takes 1.6
ms. Swapping 3 pages, changing the guest page tables, and writing
the shellcode takes 5.03 ms.

We leak the guest’s physical address of the network packet to
locate the injected code. This allows us to easily swap the pages
and perform the replay attack. In an end-to-end attack, an attacker
has to dynamically find the page. Prior works show the feasibility
of finding dynamic pages in SEV-SNP CVMs [23, 33, 34, 37].
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8 RMP Lifecycle Management

Similarly to the initialization, we also analyze the security of the
RMP lifecycle from the x86 and PSP perspectives.

8.1 RMPUPDATE

RMPUPDATE exposes a restricted interface to the hypervisor to
update RMP entries. It performs various microcode checks to ensure
secure lifecycle management of the RMP. TLB entries cache the
RMP permissions. Thus, after an update to the RMP, RMPUPDATE
must flush TLB entries resolving to the page whose RMP entry
has been updated. Our experiments confirm that after executing
an RMPUPDATE, previous TLB entries resolving to the page do
not exist anymore. Listing 6 depicts the experiment we perform to
validate the flushing operation with 4KiB as well as 2MiB pages.

1 u64 *ptr = Oxfffffffffffooeoo;

2 map_phys_to_virt (0x3000000 ,0xfffffffffffoo0oo)
WRITE_ONCE(ptr[@]); /* create TLB entry =/
rmpupdate_firmware (ptr);

WRITE_ONCE (ptr[@]);

Listing 6: RMPUPDATE TLB flushing check.

SEV-SNP disallows the existence of 1GiB TLB entries, as this poten-
tially undermines SEV-SNP security since the RMP operates only
on 4KiB / 2MiB entries. Translations from 1GiB pages only insert
2MiB entries for the respective submapping [7]. An insertion of a
1GiB TLB must first check the permissions of all 512 2MiB subpages,
and if any of those restrict write access (e.g., any of the 2MiB pages
contain a Firmware page), the 1GiB entry would only allow reads.
AMD decided to skip this case and only insert 2MiB entries for
simplicity.

To further test if we can circumvent the TLB-based protection
checks, we use the Sinkclose vulnerability to gain System Man-
agement Mode (SMM) code access [31]. When entering SMM, the
processor executes in real mode. Real mode directly accesses physi-
cal memory and does not use virtual addresses. We suspect that by
circumventing the page walk, we can bypass the RMP protection
checks. However, when writing physical memory protected by the
RMP directly, we encounter a system freeze with a reset. We suspect
x86 cores have additional protections besides the TLB to enforce
SEV-SNP memory access checks. The freeze we are seeing is most
likely the result of an unhandled page fault, which leads to a double
and then a triple fault.

To update the RMP, RMPUPDATE must read and write the RMP
entry. To prevent x86 and the PSP from accessing and modifying
the same data, AMD introduced the SNP state machine [8]. Each
page state may only be modified by the PSP or by x86 at any given
point in time. There is no page state that the x86 core and PSP can
update simultaneously. The PSP can exclusively transform pages
into a different state with the immutable bit set (Table 2), which
prevents x86 and the PSP from concurrently updating the same
RMP entry in memory.

However, x86 and PSP may race to update a sub-entry in a 2MiB
range and the 2MiB RMP entry. While x86 accesses the RMP, the
PSP may access the same 2MiB region concurrently. As the first
2MiB page contains metadata about the 512 4KiB mappings within,
care must be taken when updating it, as x86 might access other
pages concurrently. To prevent such races, the PSP SEV firmware
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source code shows how the PSP ensures that the PSP and x86
cannot race in performing the update to the 2MiB RMP region.
AMD uses a special invalid ID, 0x3ff, to lock the 2MiB range to
prevent microcode access [6].

Lastly, we study how RMPUPDATE accesses the memory and
if we can break the coherency of the RMPUPDATE instruction
itself. We use AMD IBS to trace the micro-ops of RMPUPDATE
and discover that RMPUPDATE accesses the RMP entry using its
physical address. Using the physical address directly means we
cannot use page tables to influence the caching behavior of the
access. From the recent Entrysign discovery, we know that the CPU
microcode has multiple addressing modes [18]. We suspect that the
RMPUPDATE microcode uses one of the addressing modes that
directly accesses physical memory. Further, we use the Sinkhole
technique to overlap the APIC register with the range of RMPUP-
DATE memory accesses, to force the RMPUPDATE instruction to
read MMIO memory instead of DRAM [13]. However, despite the
overlap, RMPUPDATE accesses DRAM and updates the RMP entry
correctly. This further strengthens the hypothesis that microcode
uses a special read and write mode to access the RMP.

8.2 PSP RMP Updates

The PSP is an Arm Cortex A5 processor with dedicated data and
instruction caches. It caches accessed data, even if it comes from x86
DRAM. CS blocks do not snoop the caches of the PSP; therefore, the
PSP must ensure coherency within its software. To resolve the issue,
the PSP initiates a software cache flush after writing to the RMP
to evict dirty cachelines. This resolves two issues: first, it ensures
that the PSP always reads the latest data from DRAM, and second,
it ensures x86 cores always get the latest data when reading RMP
memory.

9 Discussion

RMPocALYPSE overwrites the RMP during initialization. From our
analysis of AMD SEV firmware source code, we conclude that AMD
enables mechanisms of protecting the RMP during initialization,
but they are insufficient. The TMR protection (see Section 3.2.2)
blocks accesses, but it is too late and allows stale cache entries to
overwrite protected RMP memory. The PSP operating system is
closed source and operates on MMIO memory to execute platform
configuration commands, thus making binary analysis infeasible.
Thus, we are unable to validate or falsify any hypothesis. No matter
what the cause, we are able to corrupt the RMP from x86 cores. So
we propose defenses to stop this behavior.

We propose two ways to mitigate the underlying vulnerability
and suggest one firmware defense to make exploitation difficult.
The underlying issue originates from the positioning of the RMP
memory protection at the CS blocks. An activated RMP system
performs the RMP checks at a core level before reaching the cache
hierarchy. Thus, when switching from TMR protection to RMP
semantics, all data that is in the caches at that time is not subject
to either checks.

Mitigation 1: Aligning the Barriers. To mitigate the attack,

the protection mechanism during initialization and runtime (RMP
checks) should be in the same position on the platform. Thus, the
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initialization barrier should be installed at a core level, also pro-
tecting the caches, and not at the memory controller in the form
of TMRs. Moving the RMP checks on the memory controller is
infeasible, since data in the caches must be subject to RMP checks.
It remains to be seen if the affected AMD hardware can enforce
such checks at the core boundary. Such checks would likely cause
changes to the microcode as well as the PSP. Depending on the
hardware mechanism implementing such a barrier, special care
must be taken when reasoning about the security. The PSP must
also flush the TLBs of the x86 cores if the RMP overwrite protection
during initialization is TLB-based (like the RMP checks). Further, all
instructions directly accessing physical memory must be patched
to not access RMP memory during initialization (e.g., VMSAVE).

Zen 3 Considerations. Zen 3 does not ensure cache coherence be-
tween encrypted and unencrypted memory. Thus, when deploying
a mitigation, AMD must make sure to pay close attention to Zen
3. PSP writes to unencrypted RMP memory do not invalidate dirty
cacheline entries of encrypted RMP memory within the x86 caches.
Thus, if the x86 core can hold those entries dirty in the caches for
the duration of the initialization, it can flush the cache entries after
the TMRs and the barrier on the x86 core lifts. To prevent the attack,
the PSP must invalidate all cache entries in the encrypted domain
pointing to RMP memory. This can be done by setting a special
platform bit and reading the memory from the PSP [6].

Mitigation 2: Flushing the Caches. Instead of moving the ini-
tialization barrier, the PSP could force all x86 cache entries to be
flushed to the memory controller after activating RMP checks. At
that time, the TMR barrier must still be in place, such that the
TMR blocks all dirty cache entries pointing to RMP memory. This
would be the easiest fix, as it simply requires the PSP to flush the
caches. However, the current PSP source code never initiates an x86
cache flush and always implicitly requests the x86 cores to execute
wbinvd and validates its execution on each core. We suspect that
the PSP most likely does not have the capability of flushing the
x86 caches, and thus, implementing our proposed solution would
require API changes to the PSP initialization. Patching both the
hypervisor and the PSP, and requiring version alignment, makes
implementing this defense challenging.

Our proposed solution only works if the x86 cores perform RMP
access checks by accessing the RMP directly in memory and ig-
noring stale data in the L1/L2/L3 cache. As RMPUPDATE directly
accesses physical RMP memory, we assume the x86 cores do the
same when accessing the RMP entry to validate the permissions of
the memory request. Otherwise, the proposed defense is susceptible
to at least one race condition. While the PSP is flushing the entire
cache, an x86 core could insert TLB entries that allow writes to the
RMP memory range simply by reading or writing the RMP memory.
As the TMR is still in place, such access would be only in the caches
and will not propagate to physical DRAM. After flushing the cache,
the PSP would SEV-SNP globally, flush the TLBs, and disable the
TMRs in a last step. Since flushing the caches and TLBs does not
happen atomically, this opens up a race condition for creating stale
TLB entries that could overwrite the RMP after initialization. If the
PSP first flushes the caches and then the TLBs, an x86 core could
use a stale TLB entry to create another dirty cache entry pointing
to the RMP. If the PSP does it the other way around, the x86 core
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could use the window to create another stale TLB entry, as the RMP
checks of the x86 core use the stale cache entries for their checks.

Firmware Defense. Our proof-of-concept attacks heavily rely
on a writable RMP at runtime. However, there exists no benign
use case where an RMP entry protecting the RMP is in a state
other than firmware. Thus, the PSP could check the RMP entries
protecting the RMP on every x86 API call. While this mitigation
can be circumvented since it is vulnerable to TOCTOU attacks, it
will likely make the exploitation harder. The processor caches RMP
permissions in the TLB. A core with stale TLB entries can overwrite
the RMP entry despite the RMP in memory indicating that write
access is disallowed. To prevent this, the PSP must flush the TLB of
all cores, but this is racy as flushing the TLBs and reading the RMP
entry is not atomic. Further, flushing the TLB globally after every
RMP entry read would cause severe overhead. While not stopping
our attack, it makes exploitation more challenging. Periodic RMP
checks were suggested by Google Researchers in a preliminary
assessment of the SEV-SNP [16].

10 Related Work

We discuss attacks on AMD SEV variants (SEV, SEV-ES, SEV-SNP).
Attacks against SEV and SEV-ES. Several attacks exploit AMD’s
initial SEV design either with page remapping attacks or by directly
modifying or observing the VMSA of the guest CVM [20, 29]. Many
of the SEV page remapping attacks also apply to SEV-ES [29, 37].
Notably, Morbitzer et al. achieve arbitrary code injection with-
out relying on I/O operations [37]. Crossline exploits weak ASID
bindings to exploit SEV and SEV-ES [24]. Radev exploit untrusted
interfaces to fully compromise SEV and SEV-ES et al. [32]. Het-
zelt analyze device interfaces of CVMs and use them to exploit
implementation vulnerabilities et al. [21]. Cipherleaks exploits the
deterministic encryption of the VMSA to leak information about
executing programs in the VM [25]. While the proof-of-concept was
done on SEV-ES due to the unavailability of SEV-SNP machines at
the time of writing, AMD notes that SEV-SNP is also affected. Pwr-
Leaks abuses power side channels to infer instruction information
about CVMs [36]. Li et al. uses TLB Poisoning to break SEV-ES [26].
Buhren uses a power glitch attack against the PSP to extract the
root keys, rendering key-based attestation useless et al. [9]. All of
these attacks were on the predecessors of SEV-SNP, which were
considered insecure in the confidential computing threat model.
Since RMPocALYPSE exploits the RMP to break SEV-SNP, our attack
does not apply to SEV and SEV-ES.

Attacks against SEV-SNP. A pre-release security report by Google
Project Zero uncovered multiple severe flaws in SEV-SNP archi-
tecture [16]. CacheWarp exploits an unlocked MSR, allowing the
untrusted hypervisor to execute the INVD instruction [41]. It builds
primitives to rollback caches and compromise userspace applica-
tions. Heckler and WeSee exploit malicious interrupt injection in
CVMs [33, 34]. Heckler uses the Int@x8@ interrupt to corrupt the
state of userspace applications. WeSee uses the #VC interrupt to
attack the Linux kernel running in the guest CVM to gain arbitrary
code execution. CounterSEVeillance uses performance counters to
observe information inside the CVM (e.g., branches) and recover
secret key values [14]. BadRAM exploits memory aliasing of the
DRAM chips [12]. DRAM aliasing allows BADRAM to bypass RMP
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protections and circumvent SEV-SNP security guarantees. Further-
more, there have been multiple ciphertext side-channel and cache
side channel attacks on SEV-SNP [11, 15, 23, 35, 39, 40]. RMPoca-
LYPSE is the first work that examines the RMP lifecycle and shows
critical security gaps.

11

Conclusion

We present a simple yet elegant and powerful attack called RM-
PocALYPSE, that exploits the lack of proper RMP protection during
initialization on AMD SEV-SNP. We hope that our analysis of AMD
SEV-SNP from a Data Fabric viewpoint helps other researchers to
further assess its security from a different perspective. Finally, we
thank AMD for open-sourcing the SEV firmware code and encour-
age them to continue in that direction.
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A Attestation
There are two means for a guest to attest to the running image the
hypervisor creates.

(1) ID Block attestation through SNP_LAUNCH_FINISH
(2) Runtime attestation through SNP_GUEST_REQUEST

A.1 ID Block Attestation

In addition to the image to boot, the guest supplies the hypervisor
with an ID_Block. The ID_Block contains the expected 48-byte
measurement of the guest, as well other other guest parameters (e.g.,
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the guest policy). When the hypervisor is about to activate an SEV-
SNP guest, it can optionally set the ID_BLOCK_EN as an argument
to SNP_LAUNCH_FINISH. Doing so results in the PSP expecting an
additional physical address as an argument, pointing to the ID_-
Block. Upon execution of SNP_LAUNCH_FINISH, the PSP checks
that the computed hash matches the user-supplied hash in the
ID_Block.

An attacker uses RMPocALYPSE before calling SNP_LAUNCH_-
FINISH, to overwrite the measurement hash stored in the Context
page to match the expected hash within the ID_Block.

A.2 Runtime Attestation

A guest can dynamically request an attestation report from the PSP
during runtime. The flow follows the standard hypercall procedure.
The guest sets the hypercall information to VMGEXIT_GUEST_RE-
QUEST and the request to the PSP to MSG_REPORT_REQ. The hypercall
transfers control to the untrusted hypervisor. The hypervisor can-
not determine which subcall the guest wants the PSP to perform,
as the payload is encrypted with a key only accessible to the guest
and the PSP. Thus, every VMGEXIT_GUEST_REQUEST may request
the attestation report. The hypervisor forwards the encrypted re-
quest to the PSP for handling by calling SNP_GUEST_REQUEST. Once
the PSP finishes the execution, the untrusted hypervisor copies
the result back into guest shared memory and notifies the guest
about completion. The guest decrypts the payload and checks if

the attestation report matches the expected result.
A malicious hypervisor may use RMPOCALYPSE any time before

calling SNP_GUEST_REQUEST on the PSP, to overwrite the measure-
ment value in the Context page.
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